δ-Cut Decision-Theoretic Rough Set Approach: Model and Attribute Reductions
نویسندگان
چکیده
Decision-theoretic rough set is a quite useful rough set by introducing the decision cost into probabilistic approximations of the target. However, Yao's decision-theoretic rough set is based on the classical indiscernibility relation; such a relation may be too strict in many applications. To solve this problem, a δ-cut decision-theoretic rough set is proposed, which is based on the δ-cut quantitative indiscernibility relation. Furthermore, with respect to criterions of decision-monotonicity and cost decreasing, two different algorithms are designed to compute reducts, respectively. The comparisons between these two algorithms show us the following: (1) with respect to the original data set, the reducts based on decision-monotonicity criterion can generate more rules supported by the lower approximation region and less rules supported by the boundary region, and it follows that the uncertainty which comes from boundary region can be decreased; (2) with respect to the reducts based on decision-monotonicity criterion, the reducts based on cost minimum criterion can obtain the lowest decision costs and the largest approximation qualities. This study suggests potential application areas and new research trends concerning rough set theory.
منابع مشابه
Non-Monotonic Attribute Reduction in Decision-Theoretic Rough Sets
For most attribute reduction in Pawlak rough set model (PRS), monotonicity is a basic property for the quantitative measure of an attribute set. Based on the monotonicity, a series of attribute reductions in Pawlak rough set model such as positive-region-preserved reductions and condition entropy-preserved reductions are defined and the corresponding heuristic algorithms are proposed in previou...
متن کاملTheory and Application on Rough Set, Fuzzy Logic, and Granular Computing
Recently, the rough set and fuzzy set theory have generated a great deal of interest among more and more researchers. Granular computing (GrC) is an emerging computing paradigm of information processing and an approach for knowledge representation and data mining. The purpose of granular computing is to seek for an approximation scheme which can effectively solve a complex problem at a certain ...
متن کاملMulti-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes
This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...
متن کاملDominance-based Rough Set Approach in Set- valued Ordered Information Systems
Set-valued information systems are generalized single-valued information systems. In this paper, by introducing a type of dominance relation to set-valued ordered information systems, we establish dominance-based rough set approach and propose a ranking approach for all objects based on the dominance classes. Furthermore, we discuss dominance rules, propose attribute reductions of consistent se...
متن کاملRough Set Approach to Approximation Reduction in Ordered Decision Table with Fuzzy Decision
In practice, some of information systems are based on dominance relations, and values of decision attribute are fuzzy. So, it is meaningful to study attribute reductions in ordered decision tables with fuzzy decision. In this paper, upper and lower approximation reductions are proposed in this kind of complicated decision table, respectively. Some important properties are discussed. The judgeme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014